Gravel
Heiloo
Heiloo
Ik herlees Nicholas Nassim Taleb’s Fooled By Randomness. Heel veel voorspellingskracht wordt gevonden in historische data. Maar niet de Black Swans. Ik moet denk aan de hype rond AI die momenteel heerst.
AI en ML leven van historische data. Black Swan events komen niet voor in historische data.
De AI is dus net zo stom als mensen: onze AI ziet grote hoeveelheden witte zwanen. Als je de AI vraag welke kleur een zwaan heeft, zegt hij dus: wit. Zwarte zwanen bestaan ook voor de AI niet.
AI is waardeloos waar het gaat om Black Swan Events.
ChatGPT zegt het zelf:
AI systems, including those based on advanced algorithms like GPT-3.5, have limitations when it comes to predicting black swan events. Black swan events are extremely rare, unpredictable, and have a significant impact. These events are, by definition, unforeseen and often fall outside the range of normal expectations.
AI models, including machine learning algorithms, are generally trained on historical data. If black swan events have never occurred in the training set, the AI model would not have learned to predict them explicitly. Traditional AI models work based on patterns and correlations found in the data they were trained on. They are not capable of inventing entirely new and unprecedented events beyond the scope of their training data.
However, it’s essential to note that AI can be helpful in preparing for unexpected events, even if they cannot predict black swan events directly. Here’s how:
…
Despite these capabilities, it’s important to maintain a cautious approach when relying on AI for preparing for black swan events. Human judgment, expert analysis, and continuous monitoring are essential elements in mitigating the impacts of truly unforeseen and exceptional events.
Wieringerwerf
Heiloo
Leiden
Hoorn
Heiloo
Malcolm Gladwell legt in zijn nieuwe boek Talking to Strangers uit dat we niet op intuïtie moeten vertrouwen. In plaats daarvan moeten we ons realiseren dat we omgaan met mensen van wie de aannames, perspectieven en achtergronden verschillen van de onze, en voordat we conclusies trekken eerst intern onderzoek doen.
Dit lijkt aan te sluiten bij het onderzoek van Daniel Kahneman, zoals gepubliceerd in Thinking Fast and Slow, waarin ons Systeem 1-denken ons tot snelle conclusies leidt die ons Systeem 2-denken zal proberen te rechtvaardigen.
Nu de link naar AI:
Kunstmatige Intelligentie neemt mogelijk niet alleen beslissingen omdat het meer (dieper) weet over een onderwerp en al die informatie snel kan verwerken. Het lijkt er ook op dat AI betere beslissingen kan nemen omdat het veel informatie kan negeren die in het hoofd van mensen zit, en het kan de fysieke aanwezigheid van de dingen voor ons negeren.
Als dat zo is, kan AI maar beter niet menselijker worden. Dat zou rampzalig zijn voor de kwaliteit van haar beslissingen.
Amsterdam
Amsterdam